SHORT PAPER

A convenient synthesis of (*E*)- α -cyano and (*E*)- α -ethoxycarbonyl vinylphosphonates[†] Yanchang Shen* and Guo-Fang Jiang

Shanghai Institute of Organic Chemistry, Academia Sinica 354 Fenglin Lu, Shanghai 200032, China

A new olefination catalysed by a base (KOBu^t) and its application to the stereoselective synthesis of substituted (*E*)- α -cyano and (*E*)- α -ethoxycarbonyl vinylphosphonates is described.

Attention has been devoted to the synthesis of vinylphosphonates bearing electron-withdrawing substituents such as cyano and ethoxycarbonyl groups at the α -position since they are useful intermediates for the construction of heterocyclic or carbocyclic compounds in organic synthesis. The methods for their preparation include the oxidative elimination of α -sulfenyl and α -selenylphosphonates, transition metal catalyzed synthesis, the classic Knoevenagel condensation mediated by titanium compounds and a palladium-catalysed coupling reaction.^{1–5} A further convenient method for their preparation would be valuable.

As part of our continuing investigation of new synthetic methodologies for carbon–carbon double bond formation⁶ we report a base-catalysed olefination and its application to the stereoselective synthesis of (E)- α -cyano and (E)- α -ethoxycarbonyl vinylphosphonates. The reaction is shown in Scheme 1.

Scheme 1 Reagents and conditions i, KOBu^t (20 mol%), THF, 20°C, 2 min.

The catalytic reaction mechanism may be rationalized as shown in Scheme 2.

* To receive any correspondence. E-mail: shenyc@pub.sioc.ac.cn

[†] This is a Short Paper, there is therefore no corresponding material in *J Chem. Research (M)*.

The phosphoryl-stabilized carbanion 4, generated from diethyl cyanomethylphosphonate 1 and potassium *tert*butoxide in tetrahydrofuran (THF) reacts with *N*-tosylsulfonyl imines 2 to afford adduct 5. An intramolecular hydrogen rearrangement of 5 gave 6. Elimination of the *p*-toluenesulfonamide anion afforded the product 3. The *p*-toluenesulfonamide anion abstracted a proton from 1 to give *p*-toluenesulfonamide and regenerate the carbanion 4. Thus the catalytic cycle was completed. The results are summarized in Table 1.

It has been reported that when the vinyl H is *cis* with respect to the phosphoryl group, the ${}^{3}J_{cis, H,P}$ equals 21 Hz, but when the vinyl H is *trans* with respect to the phosphoryl group, the ${}^{3}J_{trans H,P}$ equals 43 Hz.⁷ In our cases the ${}^{3}J_{H,P}$ is in the range of 20.1 – 21.8 Hz and therefore the configuration is *E*.

This reaction can be extended to the diethyl ethoxycarbonyl-methylphosphonate 7, but it is necessary to raise the temperature of the reaction to $60 \,^{\circ}$ C.

Scheme 3 Reagents and conditions i, KOBu^t (20 mol%), THF, 60°C, 2 min.

The results are summarized in Table 2.

This methodology provides a convenient and highly stereoselective synthesis of the title compounds exclusively

Table 1	Preparation	of α -cyano-viny	/lphosphonates 3
		, , ,	

	, ,,	•
Compound	R	Yield (%) ^a
3a	2-CH2OC2H	86
3b	C _∞ H _∞ [°]	98
3c	4-CĬC _e H₄	94
3d	4-CH₃OČ₅Hᢆ₄	81
3e	4-CHଁ₃CၙHଁ₄ [‡]	83
3f	4-(CH ₃) ₂ ŇČ _e H ₄	97
3g ^b	4-NŎ₂CĸĤ₄ ^Ť	94
3ĥ	3-BrĈ _e H _₄ [→]	89
3i	2,4-Cl ₂ Č ₆ H ₃	92

^alsolated yields. ^bThe temperature of the reaction was –70 °C.

Table 2 Preparation of α-ethoxycarbonyl-vinylphosphonates 7

Compound	R	Yield (%) ^a	
7a	4-CIC ₆ H ₄	68	
7b	2-CH ₃ OČ ₆ H ₄	75	
7c	4-CH ₂ OC ₂ H ²	80	
7d	4-CHᢆ₂CၙHᢆ₄ [‡]	86	
7e	3-BrČ _e H ₄ Ť	74	

^alsolated yields.

containing the E-isomer. They would be expected to be useful intermediates in organic synthesis, particularly in annulation reactions.

Experimental

Melting points are uncorrected. The IR spectra of liquid products were obtained as films on a Digilab FTS-20E spectrometer. ^IH NMR spectra were recorded on a Bruker AM-300 (300 MHz) spectrometer $(\hat{\delta} \text{ values in ppm from tetramethylsilane, in CDC1₂, J-values are$ given in Hz). Mass spectra were measured on a Finnigan GC-MS-4021 mass spectrometer.

Diethyl cyanomethylphosphonate 1 and Diethyl ethoxycarbonylmethyl phosphonate 7 were obtained from Aldrich Company.

General procedure for the preparation of α -Cyano-vinylphosphonates 3: A mixture of diethyl cyanomethylphosphonate 1 (0.177g, 1 mmol), N-toluene-p-sulfonylarylimine 2 (1 mmol), potassium tertbutoxide (0.023g, 0.2 mmol) and tetrahydrofuran (10 cm³) in a capped vessel under nitrogen at 20 °C was stirred for 2 min. TLC showed that the reaction was completed. The mixture was filtered through a short column of silica gel to remove the precipitate which was identified as p-toluenesulfonamide. The filtrate was concentrated and chromatographed on silica gel, and eluted with petroleum ether (60-90 °C)-ethyl acetate (2:1) to give the product 3.

(E)-Diethyl 1-cyano-2-(2-methoxyphenyl)-vinylphosphonate (3a): Yield: 86%, oil, v_{max}/cm^{-1} . 2990, 2210, 1590, 1570, 1490, 1260, 1020, 980. $\delta_{\rm H}$ 8.49(d, $J = 21.8{\rm Hz}$, 1H), 8.28–8.25(m, 1H), 1020, 980. $\delta_{\rm H} \stackrel{\text{max}}{\rightarrow} 4^{\text{max}}(d, J = 21.8\text{Hz}, 1\text{H}), 8.28-8.25(\text{m}, 1\text{H}), 7.53-7.47(\text{m}, 1\text{H}), 7.07-6.93(\text{m}, 2\text{H}), 4.30-4.07(\text{m}, 4\text{H}), 3.88(\text{s}, 3\text{H}),$ 1.40(t, J = 7.1HZ, 6H); m/z 295(M⁺, 60), 264(45), 208(87), 157(81), 138(62), 111(100), 82(68). (Found: C, 56.81; H, 5.99; N, 4.89. C₁₄H₁₈NO₄P (295.27) requires C, 56.95; H, 6.14; N, 4.74%).

(E)-Diethyl 1-cyano-2-phenyl-vinylphosphonate (**3b**):⁸ Yield: 98%, (b) $D(m^{-1}, 2990, 2210, 1600, 1570, 1260, 1070, 1020, 980. \delta_{\rm H}$ 8.02(d, J = 21.8Hz, 1H), 7.98–7.95(m, 2H), 7.58–7.46(m, 3H), 4.30–4.16(m, 4H), 1.41(t, J = 7.0Hz, 6H); m/z 265(M⁺, 59), 236(100), 219(59), 192(36), 174(41), 156(92), 128(72), 111(81), 82(71).

(E)-Diethyl 1-cyano-2-(4-chlorophenyl)-vinylphosphonate (3c):⁸ Yield: 94%, oil, v_{max}/cm^{-1} . 2990, 2210, 1590, 1560, 1490, 1260, 1100, 1020, 980. $\delta_{\rm H}$ 7.94(d, J = 21.3Hz, 1H), 7.89(d, J = 7.0Hz, 2H), 1100, 1020, 980. $\delta_{\rm H}^{\rm max}$, 94(d, J = 21.3Hz, 1H), 7.89(d, J = 7.0Hz, 2H), 7.46(d, J = 7.0Hz, 2H), 4.28–4.15(m, 4H), 1.39(t, J = 7.1Hz, 6H); m/z 301(M⁺+2, 28), 299(M⁺, 100), 270(52), 253(31), 190(57), 163(38), 111(73), 82(62).

(B)-Diethyl 1-cyano-2-(4-methoxyphenyl)-vinylphosphonate (**3d**):⁸ Yield: 81%, oil, v_{max} /cm⁻¹. 2990, 2210, 1610, 1590, 1510, 1260, 1180, 1070, 1020, 980 $\delta_{\rm H}$ 7.96(d, J = 8.8Hz, 2H), 7.91(d, J = 21.2Hz, 1H), 6.97(d, J = 9.0Hz, 2H), 4.24–4.15(m, 4H), 3.87(s, 3H), 1.39(t, J = 7.1Hz, 6H); 295(M⁺, 100), 280(10), 266(33), 249(32), 186(71), 157(61), 128(41), 111(27), 82(50). 157(51), 138(41), 111(87), 82(50).

(E)-Diethyl 1-cyano-2-(2-methylphenyl)-vinylphosphonate (3e): Yield: 83%, oil, v_{max}/cm^{-1} . 2990, 2210, 1590, 1560, 1260, 1070, 1020, 980. $\delta_{\rm H}$ 7.95(d, J = 21.4Hz, 1H), 7.86(d, J = 8.2Hz, 2H), 7.28(d, J = 8.1Hz, 2H), 4.27–4.15(m, 4H), 2.43(s,3H), 1.41(t, T.20(d), J = 6.1Hz, 2H), 4.27–4.15(m, 4H), 2.63(c), 170(100) J = 7.0Hz, 6H); m/z 279(M⁺,88), 264(30), 250(64), 170(100), 142(58), 111(95), 82(62). (Found: C, 60.14; H, 6.51; N, 5.18. $\begin{array}{l} C_{14}H_{18}NO_{3}P\ (279.28)\ requires\ C,\ 60.21;\ H,\ 6.50;\ N,\ 5.02\%).\\ (E)-Diethyl\ 1-cyano-2-(4-dimethylaminophenyl)-vinylphosphonate \end{array}$

(3f).⁹ Yield: 97%, oil, v_{max} cm⁻¹. 2200, 1610, 1570, 1520, 1260, 1020, 970. $\delta_{\rm H}$ 7.90(d, J = 9.0Hz, 2H), 7.80(d, J = 21.0Hz, 1H), 6.68(d, J = 9.0Hz, 2H), 4.23–4.12(m, 4H), 3.09(s,6H), 1.38(t, J = 7.0Hz, 1H) 6H); *m/z* 308(M⁺,100), 280(17), 234(20), 170(85), 126(7).

(E)-Diethyl 1-cyano-2-(4-nitrophenyl)-vinylphosphonate (3g): Yield: 94%, oil, v_{max} /cm⁻¹. 2990, 2220, 1590, 1520, 1350, 1260, 1010, 980. $\delta_{\rm H}$ 8.34(d, J = 7.0Hz, 2H), 8.09(d, J = 7.0, 2H), 8.06(d, J = 21.2Hz, 1H), 4.30–4.21(m, 4H), 1.42(t, J = 7.0Hz, 6H); m/z310(M⁺,24), 293(22), 281(41), 265(84), 235(63), 201(30), 155(67), 111(60), 82(100).

(*E*)-*Diethyl* 1-*cyano*-2-(3-*bromophenyl*)-*vinylphosphonate* (**3h**): (*E*)-*Diethyl* 1-*cyano*-2-(3-*bromophenyl*)-*vinylphosphonate* (**3h**): Yield: 89%, oil, v_{max}/cm^{-1} . 2990, 2220, 1600, 1560, 1260, 1060, 1020, 980. $\delta_{\rm H}$ 8.01(d, J = 1.5Hz, 1H), 7.92(d, J = 21Hz, 1H), 7.91(d, J = 8.1Hz, 1H), 7.65(dd, J = 8.0, 1.1Hz, 1H), 7.37(,t J = 8.0Hz, 1H), 4.29–4.17(m, 4H), 1.40(t, J = 7.0Hz, 6H); m/z 343(M⁺-1, 60), 315(51), 296(27), 270(24), 252(23), 236(100), 155(54), 127(75), 111(72) 297(78) (Found. C 45 21); H 4.24; N 5 18, C H B700, D 111(73), 82(78). (Found: C, 45.31; H, 4.34; N, 5.18. C₁₃H₁₅BrNO₃P

(344.14) requires C, 45.37; H, 4.39; N, 4.11%).

(3i): Yield 92%, oil, v_{max}/cm^{-1} . 2990, 2220, 1600, 1580, 1460, 1260, 1050, 1010, 980. $\delta_{\rm H}$ 8.33(d, J = 20.9Hz, 1H), 8.15 (d, J = 8.6Hz, 1H), 7.52(d, J = 2.1Hz, 1H), 7.39(dd, J = 8.6, 2.1Hz, 1H), 4.30–4.22(m, 4H), 1.42(t, J = 7.1Hz, 6H); m/z 337(M⁺+4, 4), 335(M⁺+2, 22), 232(M⁺+35), 208(40), 270(10), 242(100), 224(12), 11(10), 11(11)) 333(M+,35), 298(49), 270(19), 242(100), 224(12), 161(9), 111(11). (Found: C, 46.33; H, 4.20; N, 4.15. C₁₃H₁₄C1₂NO₃P (334.14) requires C, 46.73; H, 4.22; N, 4.19%).

General procedure for the preparation of α -ethoxycarbonylvinylphosphonates 7: The procedure was similar to that for the preparation of 3 but the temperature was raised to 60 °C.

(E)-Diethyl 1-ethoxycarbonyl-2(4-chlorophenyl)-vinylphospho-(*i*)-*Diethyl* 1-*ethoxycat bohyl*-2(4-*cthorophenyl*)-*Vhyphospho-nate* (**7a**):¹⁰Yield: 68%, oil, v_{max} (cm⁻¹. 2990, 1720, 1620, 1590, 1490, 1260, 1220, 1060, 1020, 970. $\delta_{\rm H}$ 7.58(d, J = 24Hz, 1H), 7.37–7.31(m, 4H), 4.26(q, J = 7Hz, 2H), 4.21–4.12(m, 4H), 1.35(t, J = 7.0Hz, 6H), 1.25(t, J = 7.1Hz, 3H); m/z 348(M⁺+2,17), 346(M⁺,68), 300(100), 272(6), 244(4), 163(5), 136(6).

(E)-Diethyl 1-ethoxycarbonyl-2-(2-methoxyphenyl)-vinylphospho-(*L*)-*D*tentyl Tetnoxychrobityl²-(2-metnoxypin typ)-vihyphosphorate (**7b**):¹⁰ Yield: 75%, oil, v_{max} /cm⁻¹. 2990, 1720, 1600, 1260, 1210, 1060, 1020, 970. $\delta_{\rm H}$ 7.90(d, J = 24.2Hz, 1H), 7.33–7.27(m, 2H), 6.88–6.83(m, 2H), 4.20–4.12(m, 6H), 3.78(s, 3H), 1.32(t, 2H), 4.20–4.12(m, 6H), 3.78(s, 2H), 4.20–4.12(m, 6H), 4.20(m, 6H), 4 J = 7.0Hz, 6H), 1.14(t, J = 7.0Hz, 3H); m/z 343(M⁺+1,31), 311(54), 297(100), 237(18), 131(32), 209(7).

(E)-Diethyl 1-ethoxycarbonyl-2-(4-methoxyphenyl)-vinylphospho-nate (**7c**):⁹ Yield: 80%, oil, v_{max} /cm⁻¹. 2980, 1720, 1600, 1510, 1260, 1060, 1030, 970. $\delta_{\rm H}$ 7.52(d, J = 24.4Hz, 1H), 7.36(d, J = 8.8Hz, 2H), 6.83(d, J = 8.8Hz, 2H), 4.26(q, J = 7.1Hz, 2H), 4.17–4.08(m, 4H), 3.78(s, 3H), 1.31(t, J = 7.0Hz, 6H), 1.24(t, J = 7.1Hz, 3H); m/z342(M⁺,21), 297(32), 269(39), 250(38), 213(63), 160(41), 132(30), 81(65), 69(100).

(E)-Diethyl 1-ethoxycarbonyl-2-(4-methylphenyl)-vinylphospho-*(E)-Diethyl 1-etholycu bolyc2* (4-thethylpichylpicspho-nate (**7d**).¹¹ Yield: 86%, oil, v_{max}/cm^{-1} . 2990, 1720, 1610, 1260, 1210, 1060, 1020, 970. $\delta_{\rm H}$ 7.59(d, J = 24.2Hz, 1H), 7.30(d, J = 8.1Hz, 2H), 7.16(d, J = 8.1Hz, 2H), 4.27(q, J = 7.1Hz, 2H), 122(J) 22(J) 22 4.22–4.10(m, 4H), 2.35(s, 3H), 1.34(t, J = 7.0Hz, 6H), 1.25(t, J = 7.1Hz, 3H); m/z 326(M⁺,21), 281(69), 253(47), 225(48), 197(100), 144(45), 116(48).

 $(E) \hbox{-} Diethyl 1-ethoxy carbonyl-2-(3-bromophenyl)-vinyl phospho$ nate (7e):⁹ Yield: 74%, oil, v_{max} /cm⁻¹. 2990, 1720, 1620, 1560, 1260, 1220, 1060, 1020, 970. $\delta_{\rm H}$ 7.56(d, J = 23.9Hz, 1H), 7.54–7.48(m, 1220, 1060, 1020, 970. $\delta_{\rm H}$ 7.56(d, J = 23.9Hz, 1H), 7.54–7.48(m, 2H), 7.33–7.20(m, 2H), 4.27(q, J = 7.1Hz, 2H), 4.22–4.12(m, 4H), 2H), 4.27(q, J = 7.1Hz, 2H), 4.22–4.12(m, 4H), 4.27(q, J = 7.1Hz, 2H), 4.22–4.12(m, 4H), 2H), 4.27(q, J = 7.1Hz, 2H), 4.27(q, 2H), 4.27(q), 4.27(q), 4.27(q), 4.27(q), 4.27(1.33(t, J = 7.0Hz, 6H), 1.24(t, J = 7.1Hz, 3H); m/z 393(M⁺+2, 37), 391(M+,40), 344(66), 316(41), 263(100), 210(55), 182(55), 129(65), 101(88).

We thank the National Natural Science Foundation of China, the Laboratory of Organometallic Chemistry, and Academia Sinica for financial support.

Paper 9980

References

- 1 T. Minami and J. Motoyoshiya, Synthesis 1992, 333 and the references cited therein.
- T. Minami, T. Utsunomiya, S. Nakamura, M. Okubo, N. Kitamura, Y. Okada and J. Ichikawa, J Org. Chem., 1994, 59, 6717.
- 3 T. Okauchi, T. Kakiuchi, N. Kitamura, T. Utsunomiya, J. Ichikawa and T. Minami, J. Org. Chem., 1997, 62, 8419.
- X. Huang, C. Zhang and X. Lu, Synthesis, 1995, 769.
- 5 B. Akermark, J.-E, Nystrom, T. Rein, J.-E. Backvall, P. Helquist and R. Aslanian, Tetrahderon Lett., 1984; 25, 5719.
- 6 (a) Y. Shen, Acc. Chem. Res. 1998, 31, 584 (b) Y. Shen, J. Ni, J. Org. Chem., 1997, 62, 7260. (c) Y. Shen, P. Li, J. Ni, J. Sun, J. Org. Chem., 1998, 63, 9396.
- T.E. Nickson, J. Org. Chem., 1988, 53, 3870.
- 8 D. Danion, R. Carrie, Bull. Soc. Chem. Fr., 1972, 1130.
- A.V. Moskvin, M.V. Korsakov, N.A. Smorygo, B.A. Ivin, Zh. Obschch, Khim., 1984, 54, 2223; Chem. Abst, 1985, 102, 149357d.
- 10 C.N. Robinson, J.F. Addison, J. Org. Chem., 1966, 30, 4325.
- 11 Y. Shen, B. Yang, Synth. Commun., 1993, 23, 3081.

142 J. CHEM. RESEARCH (S), 2000